Effect of Sodium Tripolyphosphate on Riboflavin Encapsulation into Alginate–Chitosan Nanoparticles: A Green Nanotechnology Approach for Halal Product Analysis

Authors

  • Nurmala Nurmala Univeristas Islam Negeri Raden Intan Lampung Author
  • Hana Safitri Univeristas Islam Negeri Raden Intan Lampung Author
  • Fraulein Intan Suri Univeristas Islam Negeri Raden Intan Lampung Author
  • Vandan Wiliyanti Univeristas Islam Negeri Raden Intan Lampung Author
  • Salsabila Salsabila Univeristas Islam Negeri Raden Intan Lampung Author
  • Rafik Ardiansyah Universitas Gadjah Mada, Yogyakarta Author

Keywords:

Alginate-chitosan nanoparticles, Sodium tripolyphosphate, Riboflavin, Ionic gelation, Green nanotechnology

Abstract

Effect of sodium tripolyphosphate (STPP) on riboflavin (vitamin B₂) encapsulation in chitosan–alginate nanoparticles prepared by ionic gelation as a green nanotechnology route for halal product analysis. Sodium alginate (3.0 mg/mL) and CaCl₂ (3.35 mg/mL) were mixed to form calcium alginate, followed by addition of chitosan (in 1% v/v acetic acid) and STPP as ionic crosslinker. Nanoparticles were characterized by FTIR, TEM, and UV–Vis spectrophotometer. FTIR showed electrostatic interactions between chitosan and alginate, evidenced by a characteristic band near 1589 cm⁻¹, confirming polyelectrolyte complexation in the presence of STPP. TEM indicated a mean particle size of 69.912 nm. In vitro release was evaluated using zero-order, first-order, Higuchi, and Korsmeyer–Peppas model. The encapsulation efficiency of Ribovlafin is 93.65%. The optimum composition of nanoparticles ratio is 3:3:4, where Korsmeyer-Peppas kinetics model suited its better with the non-Fickian diffusion mechanism of 0.9854 and has the smallest reaction rate constant of 2.201 occurred within 5 h. The solvent-free, biopolymer-based process and food-grade crosslinker support halal-compliant, sustainable nanoformulations and provide a practical platform for halal product assurance (e.g., biosensing and integrity monitoring) in food and pharmaceutical applications.

References

[1] Y. Danarto, “Microencapsulation of riboflavin (vitamin B2) using alginate and chitosan: Effect of surfactant Span 80 upon microcapsule diameter,” Equilib. J. Chem. Eng., vol. 2, no. 2, pp. 47–51, 2018, doi: 10.20961/equilibrium.v2i2.40434.

[2] N. Olfat, M. Ashoori, and A. Saedisomeolia, “Riboflavin is an antioxidant: A review update,” Br. J. Nutr., vol. 128, no. 10, pp. 1887–1895, 2022, doi: 10.1017/S0007114521005031.

[3] D. Thomas, M. S. Latha, and K. K. Thomas, “Alginate/chitosan nanoparticles for improved oral delivery of rifampicin: Optimization, characterization and in vitro evaluation,” Asian J. Chem., vol. 30, no. 4, pp. 736–740, 2018, doi: 10.14233/ajchem.2018.20904.

[4] L. Cao et al., “Egg-box model-based gelation of alginate and pectin: A review,” Carbohydr. Polym., vol. 242, p. 116389, 2020, doi: 10.1016/j.carbpol.2020.116389.

[5] M. A. Azevedo, A. I. Bourbon, A. A. Vicente, and M. A. Cerqueira, “Alginate/chitosan nanoparticles for encapsulation and controlled release of vitamin B2,” Int. J. Biol. Macromol., vol. 71, pp. 141–146, 2014, doi: 10.1016/j.ijbiomac.2014.05.036.

[6] V. K. Mourya, N. N. Inamdar, and A. Tiwari, “Carboxymethyl chitosan and its applications,” Adv. Mater. Lett., vol. 1, no. 1, pp. 11–33, 2010, doi: 10.5185/amlett.2010.3108.

[7] I. Isriany, Hasriani, and N. Surya, “Formulasi dan karakterisasi nanokapsul asiklovir tersalut kitosan–alginat yang dipaut silang dengan natrium tripolifosfat,” JF FIK UINAM, vol. 2, no. 4, 2014, doi: 10.24252/.V2I4.2159.

[8] M. L. Verma et al., “Carbohydrate and protein based biopolymeric nanoparticles: Current status and biotechnological applications,” Int. J. Biol. Macromol., vol. 154, pp. 390–412, 2020, doi: 10.1016/j.ijbiomac.2020.03.105.

[9] S. C. Gutiérrez-Ruíz et al., “Parameter optimization of chitosan–TPP nanoparticles prepared by ionic gelation,” J. Biol. Eng., 2024, doi: 10.1186/s13036-024-00403-w.

[10] C. Butstraen and F. Salaün, “Preparation of microcapsules by complex coacervation of gum Arabic and chitosan,” Carbohydr. Polym., vol. 99, pp. 608–616, 2014, doi: 10.1016/j.carbpol.2013.09.006.

[11] S. C. Gutiérrez-Ruíz, H. Cortes, M. González-Torres, Z. M. Almarhoon, E. S. Gürer, J. Sharifi-Rad, and G. Leyva-Gómez, “Optimize the parameters for the synthesis by the ionic gelation technique, purification, and freeze-drying of chitosan–sodium tripolyphosphate nanoparticles for biomedical purposes,” J. Biol. Eng., vol. 18, no. 1, p. 12, 2024, doi: 10.1186/s13036-024-00403-w.

[12] P. C. Ng et al., “Recent advances in halal food authentication: Challenges and strategies,” J. Food Sci., vol. 87, no. 1, pp. 8–35, 2022, doi: 10.1111/1750-3841.15998.

[13] J. Chudzińska, A. Wawrzyńczak, and A. Feliczak-Guzik, “Carbohydrate-based polymer nanocarriers for environmentally friendly applications,” Adv. Colloid Interface Sci., 2025, Art. no. 103415, doi: 10.1016/j.cis.2025.103415.

[14] M. Rajaonarivony, C. Vauthier, G. Couarraze, F. Puisieux, and P. Couvreur, “Development of a new drug carrier made from alginate,” J. Pharm. Sci., vol. 82, no. 9, pp. 912–917, 1993, doi: 10.1002/jps.2600820909.

[15] A. Rahman, S. Suherman, and A. Suratman, “Sodium triphosphate effect on encapsulation of vitamin B6 into chitosan–alginate nanoparticles and its in vitro drug release study,” Indones. J. Chem., vol. 24, no. 5, pp. 1268–1278, 2024, doi: 10.22146/ijc.83380.

[16] A. Altan and Ö. Çayır, “Encapsulation of carvacrol into ultrafine fibrous zein films via electrospinning for active packaging,” Food Packag. Shelf Life, vol. 26, p. 100581, 2020, doi: 10.1016/j.fpsl.2020.100581.

[17] T. I. Shaheen, A. S. Montaser, and S. Li, “Effect of cellulose nanocrystals on scaffolds comprising chitosan, alginate and hydroxyapatite for bone tissue engineering,” Int. J. Biol. Macromol., vol. 121, pp. 814–821, 2019, doi: 10.1016/j.ijbiomac.2018.10.081.

[18] R. Othayoth, P. Mathi, K. Bheemanapally, L. Kakarla, and M. Botlagunta, “Characterization of vitamin-cisplatin-loaded chitosan nanoparticles for chemoprevention and cancer fatigue,” J. Microencapsul., vol. 32, no. 6, pp. 578–588, 2015, doi: 10.3109/02652048.2015.1065921.

[19] S. Shamszadeh, M. Akrami, and S. Asgary, “Size-dependent bioactivity of electrosprayed core–shell chitosan–alginate particles for protein delivery,” Sci. Rep., vol. 12, no. 1, p. 20097, 2022, doi: 10.1038/s41598-022-24389-x.

[20] R. E. Des Bouillons-Gamboa et al., “Synthesis of chitosan nanoparticles (CSNP): Effect of CH–CH–TPP ratio on size and stability of NPs,” Front. Chem., vol. 12, p. 1469271, 2024, doi: 10.3389/fchem.2024.1469271.

[21] S. Ramachandran et al., “Investigation of antidiabetic, antihyperlipidemic, and in vivo antioxidant properties of Sphaeranthus indicus Linn. in type 1 diabetic rats: Identification of possible biomarkers,” Evid.-Based Complement. Altern. Med., 2011, doi: 10.1155/2011/571721.

[22] P. Liao et al., “The layered encapsulation of vitamin B2 and β-carotene in multilayer alginate/chitosan gel microspheres: Improving the bioaccessibility of vitamin B2 and β-carotene,” Foods, vol. 11, no. 1, p. 20, 2021, doi: 10.3390/foods11010020.

[23] J. Siepmann and F. Siepmann, “Modeling of diffusion controlled drug delivery,” J. Control. Release, vol. 161, no. 2, pp. 351–362, 2012, doi: 10.1016/j.jconrel.2011.10.006.

[24] R. K. Marwaha and A. K. C., “Box–Behnken designed fluconazole loaded chitosan nanoparticles for ocular delivery,” J. Pharm. Drug Deliv. Res., vol. 3, no. 1, 2014, doi: 10.4172/2325-9604.1000121.

[25] H. Bangun, S. Tandiono, and A. Arianto, “Preparation and evaluation of chitosan–tripolyphosphate nanoparticle suspension as an antibacterial agent,” J. Appl. Pharm. Sci., vol. 8, no. 12, pp. 147–156, 2018, doi: 10.7324/JAPS.2018.81217.

Downloads

Published

2025-12-08